Energy Saving in Ethanol Production During the Mashing Process

3. European Bioethanol Technology Meeting

Association of Cereal Research, Detmold (Germany)

PD Dr. Thomas Senn

Hohenheim University, Section of Fermentation Technology, Research Distillery
Energy Saving in Mashing Process

• High gravity mashing
 • DS% up to 35%
 • Less water to heat up

• STARGEN-Process
 • Maximum temperature of 59°C in mashing
 • No additional thermal energy during mashing if hot water or stillage backset is used
High Gravity Mashing

• Mashing Conditions
 • Stillage backset 25%; pH 5.0-5.2; 50°C; 30 min
 – Enzymes
 » Liquozyme + Viscozyme Wheat
 • Liquifaction at 85°C; 60 min
 » Start of saccharification and fermentation at 32-34°C
 – Enzymes
 » Spirizyme Fuel + Alcalase
 • Isostab 30 ml / m³ of mash
 • Urea 400g / m³, Phosphoric Acid 100g/m³
Use of thermostable Xylanase
Gammaxylanase HTL

Mash viscosity without Xylanase
Einsatz thermostabiler Xylanase
Gammaxylanase HTL

Mash viscosity using Xylanase
Dependency of EtOH Concentration on DS % in Mash

\[y = 0.32x + 1.9557 \]

\[R^2 = 0.9857 \]
Dependency of Ethanol Yield LA/100 kg Wheat on DS % in Mash

\[y = -0.4564x + 53.446 \]

\[R^2 = 0.8617 \]
High Gravity Mashing

- 350 kg Wheat or Triticale / 1000 L of mash
- Add thermostable Xylanases with liquifaction enzymes
- After Liquifaction rest pH is lowered to 4,0
- Dilute mash to ~ 1,6 m³
- Simultaneous saccharification and fermentation
High Gravity Mashing - Conclusion

- Fermentation efficiency drops, if the ethanol content in the fermented mashes exceeds 10%vol EtOH.
- Benefits can be used if mashes are diluted before fermentation – cooling !!
- Fermentation to 10%vol EtOH can be finished within 48 - 52 h.
- The process has to be tailored to each plant.
- Low viscosities lead to benefits in fermentation, cooling, pumping, stirring, destillation...
Mash Preparation „Genencor Standard“

• Stillage backset 25%; pH 5.7; 57-58°C; 30 min
 • Enzymes
 – Spezyme Ethyl + Optimash BG
• Liquifaction at 85°C; 60 min
• Start of saccharification and fermentation at 32-34°C
 • Enzymes
 – Fermenzyme L 400 + Protease GC 106
• Isostab 30 ml / m³ of mash
Mash Preparation „Hohenheim“

- Stillage backset 25%; pH 5.7
- Liquifaction at 85°C; 60 min
 - Enzymes
 - Liquozyme + Gammazyme HTL
- Start of saccharification and fermentation at 32-34°C
 - Enzymes
 - Gammaclast 2 OP + SAN Super 360 L (20%)
 - Isostab 30 ml/m³ of mash
Mash Preparation „STARGEN“

- Stillage backset 25%; pH 3,8-4,2; 56-57°C; 2h
 - Enzymes
 - GC 626 + Optimash BG
- Start of saccharification and fermentation at 31-32°C; pH at start 3,5-3,6
 - Enzymes
 - STARGEN 001 + GC 106
 - Isostab 30 ml/m³ of mash
Duration of Fermentations

![Graph showing two lines representing Genencor Standard and STARGEN with data points.](image.png)
STARGEN Fermentation time: 3h
STARGEN Fermentation time: 3h
STARGEN Fermentation time: 21h
STARGEN Fermentation time: 21h
STARGEN Fermentation time: 69h
STARGEN Process: "Extract Contents" from different mashes

Time h

Content g/L

Glycerol
Lactic acid
DP3
DP2
DP1

Hohenheim University, Section of Fermentation Technology, Research Distillery
Ethanol Yield from Triticale Using Different Enzyme Systems

<table>
<thead>
<tr>
<th>Enzymes</th>
<th>LA / 100 kg Grain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genencor</td>
<td>41</td>
</tr>
<tr>
<td>Hohenheim</td>
<td>42</td>
</tr>
<tr>
<td>Stargen</td>
<td>40</td>
</tr>
</tbody>
</table>

Hohenheim University, Section of Fermentation Technology, Research Distillery
STARGEN Process

• Maximum temperature 59°C
• Simultaneous starch degradation from native granules, saccharification and fermentation
• It should be possible to finish fermentation within 60 h (max 10%vol EtOH)
• Fermentation was free from infections without problems although we used a traditional yeast mash
• Low temperature and viscosities lead to energy savings in cooling (water), pumping, stirring.....
Thank You Very Much for Your Attention