Starch Based Thickening agents for Personal Care Surfactant Systems

Fraunhofer Institut Angewandte Polymerforschung

B. Volkert, A. Lehmann, A. Schrader, H. Nerenz
Index of contents

1. Requirements and objectives

2. Approach of resolution
 2.1 Carboxymethylation of starch (CMS)
 2.2 Hydrophobic modification of CMS
 2.3 Variation of the surfactant system

3. Summary
Profile of qualification of a modern thickening agent for surfactant systems

1. Requirements and objectives

- high viscosity by low application concentration
- long-term stability over a pH-range ~4 – 9
- electrolyte und surfactant compatibility
- high transparency of the gel
- simple workability (quick swelling and pH-adjustment)
- biological degradation
- cheap
- toxicological harmlessness
- satisfy appliance properties (e.g. no gluey feeling on the skin)
1. Requirements and objectives

Used surfactant systems

14% Surfactant 2% Chemical modified starch

1.) Nonionic surfactant \rightarrow Alkyl polyglucoside (APG)
 ➢ high kindness to the skin
 ➢ not easy to thicken
 ➢ synergistic effect with anionic surfactants

2.) Anionic Surfactant \rightarrow Sodiumlaurethsulfate (SLES)
 ➢ less kindness to the skin as APG
 ➢ easier to thicken
1. Requirements and objectives

Objectives for this project

- Synthesis of a starch based thickener for personal surfactant systems
- high transparency
- formulations should obtain a customary viscosity (~ 6000 mPas)
2.1 Carboxymethylation of starch

1st Approach of resolution

Use of Carboxymethyl starch as thickening agent

\[
\begin{align*}
\text{NaOH; } i\text{-PrOH; } 40^\circ\text{C, 4.5h} \\
\text{CO}_2\text{-Na}^+ \\
\text{Cl-CH}_2\text{-COOH}
\end{align*}
\]
2.1 Carboxymethylation of starch

Shear viscosity of 2% CMS-solutions

- CMS obtain a thickening effect for APG
- CMS with a DS~1 shows maximum shear viscosity
2.1 Carboxymethylation of starch

Transparency of 2% CMS-solutions

- Only solutions of CMS without APG are bright.
- Solutions of CMS with APG are milky white with low transparency.

Fraunhofer Institut Angewandte Polymerforschung
2.2 Hydrophobic modification of Carboxymethyl starch

2nd Approach of resolution

Use of hydrophobic carboxymethyl starch as thickening agent
2.2 Hydrophobic modification of carboxymethyl starch

Hydrophobic substitution of carboxymethyl starch

- **Etherification**
 - e.g. Reaction with 1,2-Epoxyalkanes
 - Alkyl halogenides

- **Esterification**
 - e.g. Reaction with Acid halogenides
2.2 Hydrophobic modification of carboxymethyl starch

Possibilities for synthesis

Starch

1. Hydrophobation
 Alkylation (hom.)
 Carboxymethylation (het.)

2. Hydrophilation
 Carboxymethylation (het.)
 Hydrophobation: Reaction with 1,2-Epoxyalkanes
 Hydrophilation: Reaction with Monochloroacetic acid

1. Hydrophililation
 Carboxymethylstarch (het.)
 Alkylation (het.)
2.2 Hydrophobic modification of carboxymethyl starch

Homogeneous Hydrophobation

2 Reaction channels

Bien et al. NaOH (0.5 eq); Na$_2$SO$_4$ (0.5 eq); Epoxyalkanes (1.2 eq)

Funke et al. KOH (0.8 eq); Epoxyoctane (1.0 eq)
2.2 Hydrophobic modification of carboxymethyl starch

Homogeneous Hydrophobation

![Chemical structure and reaction conditions]

- $C_6 \rightarrow \text{2-Hydroxyhexyl starch }$ DS = 0.8
- $C_8 \rightarrow \text{2-Hydroxyoctyl starch }$ DS = 0.7
- $C_{10} \rightarrow \text{2-Hydroxydecyl starch }$ DS = 0.9
- $C_{12} \rightarrow \text{2-Hydroxydodecyl starch }$ DS = 0.9
2.2 Hydrophobic modification of carboxymethyl starch

Molar mass distribution of waxy maize starch

- starch isn’t complete decomposed
- remaining starch chains can react with 1,2-epoxyalkanes

![Graph](image)

- wms after reaction
- waxy maize starch
Heterogeneous Hydrophilation

1. Carboxymethylation of 2-Hydroxyoctylstarch with 1-3 eq MCE
2. Studies of these starch derivatives in surfactant system
3. Using the best results to synthesise C₆, C₁₀ and C₁₂ hydrophobic starches
2.2 Hydrophobic modification of carboxymethyl starch

Shear viscosity of 0.5% 2-Hydroxyalkylcarboxymethyl starch solutions

Shear viscosity [mPas] at shear rate = 2.55 s⁻¹

![Graph showing shear viscosity for different starch derivatives](image)

<table>
<thead>
<tr>
<th>Starch Derivative</th>
<th>DS₂-Hydroxyalkyl</th>
<th>DS₃-Carboxymethyl</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₆-CMS</td>
<td>0.8</td>
<td>0.83</td>
</tr>
<tr>
<td>C₈-CMS</td>
<td>0.7</td>
<td>0.92</td>
</tr>
<tr>
<td>C₁₀-CMS</td>
<td>0.9</td>
<td>0.84</td>
</tr>
<tr>
<td>C₁₂-CMS</td>
<td>0.9</td>
<td>0.65</td>
</tr>
</tbody>
</table>

(C₆ = 2-Hydroxyhexyl; C₈ = 2-Hydroxyoctyl; C₁₀ = 2-Hydroxydecyl; C₁₂ = 2-Hydroxydodecyl)
2.2 Hydrophobic modification of carboxymethyl starch

Transparency of 0.5% 2-Hydroxyalkylcarboxymethyl starch solutions

<table>
<thead>
<tr>
<th>Starch Derivative</th>
<th>0% Surfactant</th>
<th>14% APG</th>
</tr>
</thead>
<tbody>
<tr>
<td>C6-CMS</td>
<td>95</td>
<td>21</td>
</tr>
<tr>
<td>C8-CMS</td>
<td>95</td>
<td>60</td>
</tr>
<tr>
<td>C10-CMS</td>
<td>92</td>
<td>68</td>
</tr>
<tr>
<td>C12-CMS</td>
<td>74</td>
<td>54</td>
</tr>
</tbody>
</table>

(DS = Degree of Substitution; C6 = 2-Hydroxyhexyl-; C8 = 2-Hydroxyoctyl-; C10 = 2-Hydroxydecyl-; C12 = 2-Hydroxydodecyl)

<table>
<thead>
<tr>
<th>Starch Derivative</th>
<th>DS<sub>2-Hydroxyalkyl</sub></th>
<th>DS<sub>Carboxymethyl</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>C<sub>6</sub>-CMS</td>
<td>0.8</td>
<td>0.83</td>
</tr>
<tr>
<td>C<sub>8</sub>-CMS</td>
<td>0.7</td>
<td>0.92</td>
</tr>
<tr>
<td>C<sub>10</sub>-CMS</td>
<td>0.9</td>
<td>0.84</td>
</tr>
<tr>
<td>C<sub>12</sub>-CMS</td>
<td>0.9</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Fraunhofer Institute for Applied Polymer Research
2.2 Hydrophobic modification of carboxymethyl starch

Analysis by static light scattering (SLS)

\[\ln(K^*c/R(\theta)) = q^2 \]

- 2-Hydroxyoctyl carboxymethyl starch
- Carboxymethyl starch
- Alkylpoly glucoside

\[DS_{CM} = 0.9 \]
\[DS_{2,HO} = 0.7 \]

Carboxymethyl starch
2-Hydroxyoctyl-CMS

DS_{CM} = 1.1
2.2 Hydrophobic modification of carboxymethyl starch

APG solutions with different hydrophobic modified CMS

CMS C₈/CMS C₁₀/CMS C₁₂/CMS
2.3 Variation of the surfactant system

3rd Approach of resolution

Use of surfactant mixture APG/SLES
2.3 Variation of the surfactant system

Shear viscosity and transparency of different surfactant mixtures

- by adding SLES viscosity and transparency of the formulations increase
- max. of viscosity and transparency by adding 3% SLES
- addition of >3% SLES viscosity and transparency decrease

Shear viscosity and transparency of different surfactant mixtures

Shear viscosity [mPas] at shear rate = 2.55 s⁻¹

Transparency [%]

2-HDOCMS 14% APG 0% SLES
2-HDOCMS 14% APG 1% SLES
2-HDOCMS 14% APG 2% SLES
2-HDOCMS 14% APG 3% SLES
2-HDOCMS 14% APG 5% SLES

Fraunhofer Institute for Applied Polymer Research
2.3 Variation of the surfactant system

Comparison of formulations with and without SLES

1% 2-HDOCMS
14% Alkylpoly glucoside

1% 2-HDOCMS
14% Alkylpoly glucoside

$\eta(\gamma=2.55 \text{ s}^{-1}) = 5165 \text{ mPas}$
$T = 70 \%$

$\eta(\gamma=2.55 \text{ s}^{-1}) = 8160 \text{ mPas}$
$T = 91 \%$
3. Summary

- Selective aqueous surfactant systems can be stable thicken by modified CMS (~0.5% concentration).
- Viscosity and transparency can be controlled by varying the DS hydrophobic-hydrophilic and addition of SLES.
- In principle application as emulsifying agent for O/W-emulsion possible.
Thanks to

➢ Dr. Waltraud Vorwerg for the GPC and SLS data
➢ Dr. Jürgen Kunze for recording the 13C-NMR data
➢ Inst. Dr. Schrader for the cooperation
➢ Agency for renewable resources for the financial support